მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-5x+10y=15,-5x+2y=-1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-5x+10y=15
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-5x=-10y+15
გამოაკელით 10y განტოლების ორივე მხარეს.
x=-\frac{1}{5}\left(-10y+15\right)
ორივე მხარე გაყავით -5-ზე.
x=2y-3
გაამრავლეთ -\frac{1}{5}-ზე -10y+15.
-5\left(2y-3\right)+2y=-1
ჩაანაცვლეთ 2y-3-ით x მეორე განტოლებაში, -5x+2y=-1.
-10y+15+2y=-1
გაამრავლეთ -5-ზე 2y-3.
-8y+15=-1
მიუმატეთ -10y 2y-ს.
-8y=-16
გამოაკელით 15 განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაყავით -8-ზე.
x=2\times 2-3
ჩაანაცვლეთ 2-ით y აქ: x=2y-3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=4-3
გაამრავლეთ 2-ზე 2.
x=1
მიუმატეთ -3 4-ს.
x=1,y=2
სისტემა ახლა ამოხსნილია.
-5x+10y=15,-5x+2y=-1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
-5x+10y=15,-5x+2y=-1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-5x+5x+10y-2y=15+1
გამოაკელით -5x+2y=-1 -5x+10y=15-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
10y-2y=15+1
მიუმატეთ -5x 5x-ს. პირობები -5x და 5x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
8y=15+1
მიუმატეთ 10y -2y-ს.
8y=16
მიუმატეთ 15 1-ს.
y=2
ორივე მხარე გაყავით 8-ზე.
-5x+2\times 2=-1
ჩაანაცვლეთ 2-ით y აქ: -5x+2y=-1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-5x+4=-1
გაამრავლეთ 2-ზე 2.
-5x=-5
გამოაკელით 4 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით -5-ზე.
x=1,y=2
სისტემა ახლა ამოხსნილია.