მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-3x-2y=6,3x+3y=-9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-3x-2y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-3x=2y+6
მიუმატეთ 2y განტოლების ორივე მხარეს.
x=-\frac{1}{3}\left(2y+6\right)
ორივე მხარე გაყავით -3-ზე.
x=-\frac{2}{3}y-2
გაამრავლეთ -\frac{1}{3}-ზე 6+2y.
3\left(-\frac{2}{3}y-2\right)+3y=-9
ჩაანაცვლეთ -\frac{2y}{3}-2-ით x მეორე განტოლებაში, 3x+3y=-9.
-2y-6+3y=-9
გაამრავლეთ 3-ზე -\frac{2y}{3}-2.
y-6=-9
მიუმატეთ -2y 3y-ს.
y=-3
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=-\frac{2}{3}\left(-3\right)-2
ჩაანაცვლეთ -3-ით y აქ: x=-\frac{2}{3}y-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2-2
გაამრავლეთ -\frac{2}{3}-ზე -3.
x=0
მიუმატეთ -2 2-ს.
x=0,y=-3
სისტემა ახლა ამოხსნილია.
-3x-2y=6,3x+3y=-9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{-2}{-3\times 3-\left(-2\times 3\right)}\\-\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{3}{-3\times 3-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6-\frac{2}{3}\left(-9\right)\\6-9\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=0,y=-3
ამოიღეთ მატრიცის ელემენტები - x და y.
-3x-2y=6,3x+3y=-9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\left(-3\right)x+3\left(-2\right)y=3\times 6,-3\times 3x-3\times 3y=-3\left(-9\right)
იმისათვის, რომ -3x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -3-ზე.
-9x-6y=18,-9x-9y=27
გაამარტივეთ.
-9x+9x-6y+9y=18-27
გამოაკელით -9x-9y=27 -9x-6y=18-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-6y+9y=18-27
მიუმატეთ -9x 9x-ს. პირობები -9x და 9x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
3y=18-27
მიუმატეთ -6y 9y-ს.
3y=-9
მიუმატეთ 18 -27-ს.
y=-3
ორივე მხარე გაყავით 3-ზე.
3x+3\left(-3\right)=-9
ჩაანაცვლეთ -3-ით y აქ: 3x+3y=-9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-9=-9
გაამრავლეთ 3-ზე -3.
3x=0
მიუმატეთ 9 განტოლების ორივე მხარეს.
x=0
ორივე მხარე გაყავით 3-ზე.
x=0,y=-3
სისტემა ახლა ამოხსნილია.