მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-3x+3y=-3,x-9y=-15
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-3x+3y=-3
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-3x=-3y-3
გამოაკელით 3y განტოლების ორივე მხარეს.
x=-\frac{1}{3}\left(-3y-3\right)
ორივე მხარე გაყავით -3-ზე.
x=y+1
გაამრავლეთ -\frac{1}{3}-ზე -3y-3.
y+1-9y=-15
ჩაანაცვლეთ y+1-ით x მეორე განტოლებაში, x-9y=-15.
-8y+1=-15
მიუმატეთ y -9y-ს.
-8y=-16
გამოაკელით 1 განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაყავით -8-ზე.
x=2+1
ჩაანაცვლეთ 2-ით y აქ: x=y+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=3
მიუმატეთ 1 2-ს.
x=3,y=2
სისტემა ახლა ამოხსნილია.
-3x+3y=-3,x-9y=-15
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-15\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\\-\frac{1}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{24}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\left(-3\right)-\frac{1}{8}\left(-15\right)\\-\frac{1}{24}\left(-3\right)-\frac{1}{8}\left(-15\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
-3x+3y=-3,x-9y=-15
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-3x+3y=-3,-3x-3\left(-9\right)y=-3\left(-15\right)
იმისათვის, რომ -3x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -3-ზე.
-3x+3y=-3,-3x+27y=45
გაამარტივეთ.
-3x+3x+3y-27y=-3-45
გამოაკელით -3x+27y=45 -3x+3y=-3-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y-27y=-3-45
მიუმატეთ -3x 3x-ს. პირობები -3x და 3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-24y=-3-45
მიუმატეთ 3y -27y-ს.
-24y=-48
მიუმატეთ -3 -45-ს.
y=2
ორივე მხარე გაყავით -24-ზე.
x-9\times 2=-15
ჩაანაცვლეთ 2-ით y აქ: x-9y=-15. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x-18=-15
გაამრავლეთ -9-ზე 2.
x=3
მიუმატეთ 18 განტოლების ორივე მხარეს.
x=3,y=2
სისტემა ახლა ამოხსნილია.