მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-10x+2y=-8,10x-y=9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-10x+2y=-8
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-10x=-2y-8
გამოაკელით 2y განტოლების ორივე მხარეს.
x=-\frac{1}{10}\left(-2y-8\right)
ორივე მხარე გაყავით -10-ზე.
x=\frac{1}{5}y+\frac{4}{5}
გაამრავლეთ -\frac{1}{10}-ზე -2y-8.
10\left(\frac{1}{5}y+\frac{4}{5}\right)-y=9
ჩაანაცვლეთ \frac{4+y}{5}-ით x მეორე განტოლებაში, 10x-y=9.
2y+8-y=9
გაამრავლეთ 10-ზე \frac{4+y}{5}.
y+8=9
მიუმატეთ 2y -y-ს.
y=1
გამოაკელით 8 განტოლების ორივე მხარეს.
x=\frac{1+4}{5}
ჩაანაცვლეთ 1-ით y აქ: x=\frac{1}{5}y+\frac{4}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1
მიუმატეთ \frac{4}{5} \frac{1}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=1,y=1
სისტემა ახლა ამოხსნილია.
-10x+2y=-8,10x-y=9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-10\left(-1\right)-2\times 10}&-\frac{2}{-10\left(-1\right)-2\times 10}\\-\frac{10}{-10\left(-1\right)-2\times 10}&-\frac{10}{-10\left(-1\right)-2\times 10}\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-8\right)+\frac{1}{5}\times 9\\-8+9\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
-10x+2y=-8,10x-y=9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
10\left(-10\right)x+10\times 2y=10\left(-8\right),-10\times 10x-10\left(-1\right)y=-10\times 9
იმისათვის, რომ -10x და 10x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 10-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -10-ზე.
-100x+20y=-80,-100x+10y=-90
გაამარტივეთ.
-100x+100x+20y-10y=-80+90
გამოაკელით -100x+10y=-90 -100x+20y=-80-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
20y-10y=-80+90
მიუმატეთ -100x 100x-ს. პირობები -100x და 100x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
10y=-80+90
მიუმატეთ 20y -10y-ს.
10y=10
მიუმატეთ -80 90-ს.
y=1
ორივე მხარე გაყავით 10-ზე.
10x-1=9
ჩაანაცვლეთ 1-ით y აქ: 10x-y=9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
10x=10
მიუმატეთ 1 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 10-ზე.
x=1,y=1
სისტემა ახლა ამოხსნილია.