ამოხსნა x, y-ისთვის
x=-5
y=-1
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x-y=-4
განიხილეთ პირველი განტოლება. განტოლების ორივე მხარე გაამრავლეთ 4-ზე.
x-y=-4,x+4y=-9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-y=-4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=y-4
მიუმატეთ y განტოლების ორივე მხარეს.
y-4+4y=-9
ჩაანაცვლეთ y-4-ით x მეორე განტოლებაში, x+4y=-9.
5y-4=-9
მიუმატეთ y 4y-ს.
5y=-5
მიუმატეთ 4 განტოლების ორივე მხარეს.
y=-1
ორივე მხარე გაყავით 5-ზე.
x=-1-4
ჩაანაცვლეთ -1-ით y აქ: x=y-4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-5
მიუმატეთ -4 -1-ს.
x=-5,y=-1
სისტემა ახლა ამოხსნილია.
x-y=-4
განიხილეთ პირველი განტოლება. განტოლების ორივე მხარე გაამრავლეთ 4-ზე.
x-y=-4,x+4y=-9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-1\\1&4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-4\\-9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-1\right)}&-\frac{-1}{4-\left(-1\right)}\\-\frac{1}{4-\left(-1\right)}&\frac{1}{4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\-9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\\-\frac{1}{5}\left(-4\right)+\frac{1}{5}\left(-9\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-5,y=-1
ამოიღეთ მატრიცის ელემენტები - x და y.
x-y=-4
განიხილეთ პირველი განტოლება. განტოლების ორივე მხარე გაამრავლეთ 4-ზე.
x-y=-4,x+4y=-9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x-y-4y=-4+9
გამოაკელით x+4y=-9 x-y=-4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-y-4y=-4+9
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-5y=-4+9
მიუმატეთ -y -4y-ს.
-5y=5
მიუმატეთ -4 9-ს.
y=-1
ორივე მხარე გაყავით -5-ზე.
x+4\left(-1\right)=-9
ჩაანაცვლეთ -1-ით y აქ: x+4y=-9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x-4=-9
გაამრავლეთ 4-ზე -1.
x=-5
მიუმატეთ 4 განტოლების ორივე მხარეს.
x=-5,y=-1
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}