ამოხსნა f, x, g, h, j-ისთვის
j=i
გაზიარება
კოპირებულია ბუფერში
h=i
განიხილეთ მეოთხე განტოლება. შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
i=g
განიხილეთ მესამე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
g=i
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
i=f\times 3
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
\frac{i}{3}=f
ორივე მხარე გაყავით 3-ზე.
\frac{1}{3}i=f
გაყავით i 3-ზე \frac{1}{3}i-ის მისაღებად.
f=\frac{1}{3}i
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
\frac{1}{3}ix=x+3
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
\frac{1}{3}ix-x=3
გამოაკელით x ორივე მხარეს.
\left(-1+\frac{1}{3}i\right)x=3
დააჯგუფეთ \frac{1}{3}ix და -x, რათა მიიღოთ \left(-1+\frac{1}{3}i\right)x.
x=\frac{3}{-1+\frac{1}{3}i}
ორივე მხარე გაყავით -1+\frac{1}{3}i-ზე.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
გაამრავლეთ \frac{3}{-1+\frac{1}{3}i}-ის მრიცხველი და მნიშვნელი მნიშვნელის კომპლექსურად შეუღლებულ სიდიდეზე, -1-\frac{1}{3}i.
x=\frac{-3-i}{\frac{10}{9}}
შეასრულეთ გამრავლება \frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}-ში.
x=-\frac{27}{10}-\frac{9}{10}i
გაყავით -3-i \frac{10}{9}-ზე -\frac{27}{10}-\frac{9}{10}i-ის მისაღებად.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}