ამოხსნა r, s, t, u, v, w, x, y, z, a-ისთვის
a=-4
გაზიარება
კოპირებულია ბუფერში
-8r-3+5r=9
განიხილეთ პირველი განტოლება. დაამატეთ 5r ორივე მხარეს.
-3r-3=9
დააჯგუფეთ -8r და 5r, რათა მიიღოთ -3r.
-3r=9+3
დაამატეთ 3 ორივე მხარეს.
-3r=12
შეკრიბეთ 9 და 3, რათა მიიღოთ 12.
r=\frac{12}{-3}
ორივე მხარე გაყავით -3-ზე.
r=-4
გაყავით 12 -3-ზე -4-ის მისაღებად.
s=-4
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
t=-4
განიხილეთ მესამე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
u=-4
განიხილეთ მეოთხე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
v=-4
განიხილეთ მეხუთე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
w=-4
განიხილეთ განტოლება (6). ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
x=-4
განიხილეთ განტოლება (7). ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
y=-4
განიხილეთ განტოლება (8). ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
z=-4
განიხილეთ განტოლება (9). ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
a=-4
განიხილეთ განტოლება (10). ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
r=-4 s=-4 t=-4 u=-4 v=-4 w=-4 x=-4 y=-4 z=-4 a=-4
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}