ამოხსნა u, v, w, x, y-ისთვის
y=-9
გაზიარება
კოპირებულია ბუფერში
-3u=4-1
განიხილეთ პირველი განტოლება. გამოაკელით 1 ორივე მხარეს.
-3u=3
გამოაკელით 1 4-ს 3-ის მისაღებად.
u=\frac{3}{-3}
ორივე მხარე გაყავით -3-ზე.
u=-1
გაყავით 3 -3-ზე -1-ის მისაღებად.
v=4\left(-1\right)-5
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
v=-4-5
გადაამრავლეთ 4 და -1, რათა მიიღოთ -4.
v=-9
გამოაკელით 5 -4-ს -9-ის მისაღებად.
w=-9
განიხილეთ მესამე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
x=-9
განიხილეთ მეოთხე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
y=-9
განიხილეთ მეხუთე განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
u=-1 v=-9 w=-9 x=-9 y=-9
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}