ამოხსნა x, y-ისთვის
x=5
y=0
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
4x-3y=20
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
2x+3y=10,4x-3y=20
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+3y=10
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-3y+10
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-3y+10\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{3}{2}y+5
გაამრავლეთ \frac{1}{2}-ზე -3y+10.
4\left(-\frac{3}{2}y+5\right)-3y=20
ჩაანაცვლეთ -\frac{3y}{2}+5-ით x მეორე განტოლებაში, 4x-3y=20.
-6y+20-3y=20
გაამრავლეთ 4-ზე -\frac{3y}{2}+5.
-9y+20=20
მიუმატეთ -6y -3y-ს.
-9y=0
გამოაკელით 20 განტოლების ორივე მხარეს.
y=0
ორივე მხარე გაყავით -9-ზე.
x=5
ჩაანაცვლეთ 0-ით y აქ: x=-\frac{3}{2}y+5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=5,y=0
სისტემა ახლა ამოხსნილია.
2x+3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
4x-3y=20
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
2x+3y=10,4x-3y=20
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&3\\4&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=5,y=0
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
4x-3y=20
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
2x+3y=10,4x-3y=20
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
იმისათვის, რომ 2x და 4x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 4-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
8x+12y=40,8x-6y=40
გაამარტივეთ.
8x-8x+12y+6y=40-40
გამოაკელით 8x-6y=40 8x+12y=40-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
12y+6y=40-40
მიუმატეთ 8x -8x-ს. პირობები 8x და -8x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
18y=40-40
მიუმატეთ 12y 6y-ს.
18y=0
მიუმატეთ 40 -40-ს.
y=0
ორივე მხარე გაყავით 18-ზე.
4x=20
ჩაანაცვლეთ 0-ით y აქ: 4x-3y=20. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=5
ორივე მხარე გაყავით 4-ზე.
x=5,y=0
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}