მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x+2y=4,-2x+3y=-9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+2y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-2y+4
გამოაკელით 2y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-2y+4\right)
ორივე მხარე გაყავით 2-ზე.
x=-y+2
გაამრავლეთ \frac{1}{2}-ზე -2y+4.
-2\left(-y+2\right)+3y=-9
ჩაანაცვლეთ -y+2-ით x მეორე განტოლებაში, -2x+3y=-9.
2y-4+3y=-9
გაამრავლეთ -2-ზე -y+2.
5y-4=-9
მიუმატეთ 2y 3y-ს.
5y=-5
მიუმატეთ 4 განტოლების ორივე მხარეს.
y=-1
ორივე მხარე გაყავით 5-ზე.
x=-\left(-1\right)+2
ჩაანაცვლეთ -1-ით y აქ: x=-y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1+2
გაამრავლეთ -1-ზე -1.
x=3
მიუმატეთ 2 1-ს.
x=3,y=-1
სისტემა ახლა ამოხსნილია.
2x+2y=4,-2x+3y=-9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&2\\-2&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2\left(-2\right)}&-\frac{2}{2\times 3-2\left(-2\right)}\\-\frac{-2}{2\times 3-2\left(-2\right)}&\frac{2}{2\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4-\frac{1}{5}\left(-9\right)\\\frac{1}{5}\times 4+\frac{1}{5}\left(-9\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=-1
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+2y=4,-2x+3y=-9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-2\times 2x-2\times 2y=-2\times 4,2\left(-2\right)x+2\times 3y=2\left(-9\right)
იმისათვის, რომ 2x და -2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
-4x-4y=-8,-4x+6y=-18
გაამარტივეთ.
-4x+4x-4y-6y=-8+18
გამოაკელით -4x+6y=-18 -4x-4y=-8-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y-6y=-8+18
მიუმატეთ -4x 4x-ს. პირობები -4x და 4x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-10y=-8+18
მიუმატეთ -4y -6y-ს.
-10y=10
მიუმატეთ -8 18-ს.
y=-1
ორივე მხარე გაყავით -10-ზე.
-2x+3\left(-1\right)=-9
ჩაანაცვლეთ -1-ით y აქ: -2x+3y=-9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-2x-3=-9
გაამრავლეთ 3-ზე -1.
-2x=-6
მიუმატეთ 3 განტოლების ორივე მხარეს.
x=3
ორივე მხარე გაყავით -2-ზე.
x=3,y=-1
სისტემა ახლა ამოხსნილია.