\left| \begin{array} { c c c } { 13 } & { 11 } & { 1 } \\ { 5 } & { 17 } & { 0 } \\ { 1 } & { 6 } & { - 2 } \end{array} \right|
შეფასება
-319
მამრავლი
-319
გაზიარება
კოპირებულია ბუფერში
det(\left(\begin{matrix}13&11&1\\5&17&0\\1&6&-2\end{matrix}\right))
გამოთვალეთ მატრიცის დეტერმინანტა დიაგონალების მეთოდის გამოყენებით.
\left(\begin{matrix}13&11&1&13&11\\5&17&0&5&17\\1&6&-2&1&6\end{matrix}\right)
გაშალეთ საწყისი მატრიცა პირველი ორი სვეტის გამეორებით მეოთხე და მეხუთე სვეტის სახით.
13\times 17\left(-2\right)+5\times 6=-412
ზედა მარცხენა ჩანაწერით დაწყებული, გადაამრავლეთ ქვემოთ დიაგონალების გაყოლებით და შეკრიბეთ ნამრავლები.
17-2\times 5\times 11=-93
ქვედა მარცხენა ჩანაწერით დაწყებული, გადაამრავლეთ ზემოთ დიაგონალების გაყოლებით და შეკრიბეთ ნამრავლები.
-412-\left(-93\right)
გამოაკელით ზედა დიაგონალური ნამრავლების ჯამი ქვედა დიაგონალური ნამრავლების ჯამს.
-319
გამოაკელით -93 -412-ს.
det(\left(\begin{matrix}13&11&1\\5&17&0\\1&6&-2\end{matrix}\right))
გამოთვალეთ მატრიცის დეტერმინანტა მინორებად დაშლის მეთოდის გამოყენებით (ე.წ. ადიუნქტებად დაშლა).
13det(\left(\begin{matrix}17&0\\6&-2\end{matrix}\right))-11det(\left(\begin{matrix}5&0\\1&-2\end{matrix}\right))+det(\left(\begin{matrix}5&17\\1&6\end{matrix}\right))
მინორებზე დასაშლელად, გაამრავლეთ პირველი მწკრივის თითოეული ელემენტი თავის მინორზე, რომელიც წარმოადგენს 2\times 2 მატრიცის დეტერმინანტას, შექმნილს შესაბამისი ელემენტის შემცველი მწკრივის და სვეტის წაშლით, შემდეგ გადაამრავლეთ ელემენტის პოზიციის ნიშნით.
13\times 17\left(-2\right)-11\times 5\left(-2\right)+5\times 6-17
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), დეტერმინანტია ad-bc.
13\left(-34\right)-11\left(-10\right)+13
გაამარტივეთ.
-319
დაამატეთ წევრები საბოლოო შედეგის მისაღებად.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}