მთავარ კონტენტზე გადასვლა
ამოხსნა y, x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

y-2x=1
განიხილეთ პირველი განტოლება. გამოაკელით 2x ორივე მხარეს.
y-2x=1,y+x=4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
y-2x=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი y-ისთვის, y-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
y=2x+1
მიუმატეთ 2x განტოლების ორივე მხარეს.
2x+1+x=4
ჩაანაცვლეთ 2x+1-ით y მეორე განტოლებაში, y+x=4.
3x+1=4
მიუმატეთ 2x x-ს.
3x=3
გამოაკელით 1 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 3-ზე.
y=2+1
ჩაანაცვლეთ 1-ით x აქ: y=2x+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y=3
მიუმატეთ 1 2-ს.
y=3,x=1
სისტემა ახლა ამოხსნილია.
y-2x=1
განიხილეთ პირველი განტოლება. გამოაკელით 2x ორივე მხარეს.
y-2x=1,y+x=4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-2\\1&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{2}{3}\times 4\\-\frac{1}{3}+\frac{1}{3}\times 4\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
y=3,x=1
ამოიღეთ მატრიცის ელემენტები - y და x.
y-2x=1
განიხილეთ პირველი განტოლება. გამოაკელით 2x ორივე მხარეს.
y-2x=1,y+x=4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
y-y-2x-x=1-4
გამოაკელით y+x=4 y-2x=1-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2x-x=1-4
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-3x=1-4
მიუმატეთ -2x -x-ს.
-3x=-3
მიუმატეთ 1 -4-ს.
x=1
ორივე მხარე გაყავით -3-ზე.
y+1=4
ჩაანაცვლეთ 1-ით x აქ: y+x=4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y=3
გამოაკელით 1 განტოლების ორივე მხარეს.
y=3,x=1
სისტემა ახლა ამოხსნილია.