მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-2y=0
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
x-2y=0,x-y=4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-2y=0
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=2y
მიუმატეთ 2y განტოლების ორივე მხარეს.
2y-y=4
ჩაანაცვლეთ 2y-ით x მეორე განტოლებაში, x-y=4.
y=4
მიუმატეთ 2y -y-ს.
x=2\times 4
ჩაანაცვლეთ 4-ით y აქ: x=2y. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8
გაამრავლეთ 2-ზე 4.
x=8,y=4
სისტემა ახლა ამოხსნილია.
x-2y=0
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
x-2y=0,x-y=4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-2}{-1-\left(-2\right)}\\-\frac{1}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}0\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 4\\4\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=8,y=4
ამოიღეთ მატრიცის ელემენტები - x და y.
x-2y=0
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
x-2y=0,x-y=4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x-2y+y=-4
გამოაკელით x-y=4 x-2y=0-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2y+y=-4
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-y=-4
მიუმატეთ -2y y-ს.
y=4
ორივე მხარე გაყავით -1-ზე.
x-4=4
ჩაანაცვლეთ 4-ით y აქ: x-y=4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8
მიუმატეთ 4 განტოლების ორივე მხარეს.
x=8,y=4
სისტემა ახლა ამოხსნილია.