\left\{ \begin{array} { l } { x + y = 8 } \\ { 3 x - y - a = 0 } \\ { x + 2 y + a + 3 = 0 } \end{array} \right.
ამოხსნა x, y, a-ისთვის
x = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
y = \frac{35}{3} = 11\frac{2}{3} \approx 11.666666667
a = -\frac{68}{3} = -22\frac{2}{3} \approx -22.666666667
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x=-y+8
ამოხსენით x+y=8 x-თვის.
3\left(-y+8\right)-y-a=0 -y+8+2y+a+3=0
ჩაანაცვლეთ -y+8-ით x მეორე და მესამე განტოლებაში.
y=6-\frac{1}{4}a a=-y-11
ამოხსენით ეს განტოლება y-თვის და a-თვის შესაბამისად.
a=-\left(6-\frac{1}{4}a\right)-11
ჩაანაცვლეთ 6-\frac{1}{4}a-ით y განტოლებაში, a=-y-11.
a=-\frac{68}{3}
ამოხსენით a=-\left(6-\frac{1}{4}a\right)-11 a-თვის.
y=6-\frac{1}{4}\left(-\frac{68}{3}\right)
ჩაანაცვლეთ -\frac{68}{3}-ით a განტოლებაში, y=6-\frac{1}{4}a.
y=\frac{35}{3}
გამოითვალეთ y y=6-\frac{1}{4}\left(-\frac{68}{3}\right)-დან.
x=-\frac{35}{3}+8
ჩაანაცვლეთ \frac{35}{3}-ით y განტოლებაში, x=-y+8.
x=-\frac{11}{3}
გამოითვალეთ x x=-\frac{35}{3}+8-დან.
x=-\frac{11}{3} y=\frac{35}{3} a=-\frac{68}{3}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}