მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+y=4,3x-3y=12
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y+4
გამოაკელით y განტოლების ორივე მხარეს.
3\left(-y+4\right)-3y=12
ჩაანაცვლეთ -y+4-ით x მეორე განტოლებაში, 3x-3y=12.
-3y+12-3y=12
გაამრავლეთ 3-ზე -y+4.
-6y+12=12
მიუმატეთ -3y -3y-ს.
-6y=0
გამოაკელით 12 განტოლების ორივე მხარეს.
y=0
ორივე მხარე გაყავით -6-ზე.
x=4
ჩაანაცვლეთ 0-ით y აქ: x=-y+4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=4,y=0
სისტემა ახლა ამოხსნილია.
x+y=4,3x-3y=12
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\12\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}1&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\3&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-3}&-\frac{1}{-3-3}\\-\frac{3}{-3-3}&\frac{1}{-3-3}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{6}\\\frac{1}{2}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{6}\times 12\\\frac{1}{2}\times 4-\frac{1}{6}\times 12\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=4,y=0
ამოიღეთ მატრიცის ელემენტები - x და y.
x+y=4,3x-3y=12
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+3y=3\times 4,3x-3y=12
იმისათვის, რომ x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
3x+3y=12,3x-3y=12
გაამარტივეთ.
3x-3x+3y+3y=12-12
გამოაკელით 3x-3y=12 3x+3y=12-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y+3y=12-12
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
6y=12-12
მიუმატეთ 3y 3y-ს.
6y=0
მიუმატეთ 12 -12-ს.
y=0
ორივე მხარე გაყავით 6-ზე.
3x=12
ჩაანაცვლეთ 0-ით y აქ: 3x-3y=12. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=4
ორივე მხარე გაყავით 3-ზე.
x=4,y=0
სისტემა ახლა ამოხსნილია.