მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+6y=90,3x+3y=-30
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+6y=90
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-6y+90
გამოაკელით 6y განტოლების ორივე მხარეს.
3\left(-6y+90\right)+3y=-30
ჩაანაცვლეთ -6y+90-ით x მეორე განტოლებაში, 3x+3y=-30.
-18y+270+3y=-30
გაამრავლეთ 3-ზე -6y+90.
-15y+270=-30
მიუმატეთ -18y 3y-ს.
-15y=-300
გამოაკელით 270 განტოლების ორივე მხარეს.
y=20
ორივე მხარე გაყავით -15-ზე.
x=-6\times 20+90
ჩაანაცვლეთ 20-ით y აქ: x=-6y+90. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-120+90
გაამრავლეთ -6-ზე 20.
x=-30
მიუმატეთ 90 -120-ს.
x=-30,y=20
სისტემა ახლა ამოხსნილია.
x+6y=90,3x+3y=-30
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\-30\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&6\\3&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-6\times 3}&-\frac{6}{3-6\times 3}\\-\frac{3}{3-6\times 3}&\frac{1}{3-6\times 3}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 90+\frac{2}{5}\left(-30\right)\\\frac{1}{5}\times 90-\frac{1}{15}\left(-30\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\20\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-30,y=20
ამოიღეთ მატრიცის ელემენტები - x და y.
x+6y=90,3x+3y=-30
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+3\times 6y=3\times 90,3x+3y=-30
იმისათვის, რომ x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
3x+18y=270,3x+3y=-30
გაამარტივეთ.
3x-3x+18y-3y=270+30
გამოაკელით 3x+3y=-30 3x+18y=270-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
18y-3y=270+30
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
15y=270+30
მიუმატეთ 18y -3y-ს.
15y=300
მიუმატეთ 270 30-ს.
y=20
ორივე მხარე გაყავით 15-ზე.
3x+3\times 20=-30
ჩაანაცვლეთ 20-ით y აქ: 3x+3y=-30. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+60=-30
გაამრავლეთ 3-ზე 20.
3x=-90
გამოაკელით 60 განტოლების ორივე მხარეს.
x=-30
ორივე მხარე გაყავით 3-ზე.
x=-30,y=20
სისტემა ახლა ამოხსნილია.