\left\{ \begin{array} { l } { x + 4 y = - 1 } \\ { 2 x - 4 y = 4 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=1
y=-\frac{1}{2}=-0.5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x+4y=-1,2x-4y=4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+4y=-1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-4y-1
გამოაკელით 4y განტოლების ორივე მხარეს.
2\left(-4y-1\right)-4y=4
ჩაანაცვლეთ -4y-1-ით x მეორე განტოლებაში, 2x-4y=4.
-8y-2-4y=4
გაამრავლეთ 2-ზე -4y-1.
-12y-2=4
მიუმატეთ -8y -4y-ს.
-12y=6
მიუმატეთ 2 განტოლების ორივე მხარეს.
y=-\frac{1}{2}
ორივე მხარე გაყავით -12-ზე.
x=-4\left(-\frac{1}{2}\right)-1
ჩაანაცვლეთ -\frac{1}{2}-ით y აქ: x=-4y-1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2-1
გაამრავლეთ -4-ზე -\frac{1}{2}.
x=1
მიუმატეთ -1 2-ს.
x=1,y=-\frac{1}{2}
სისტემა ახლა ამოხსნილია.
x+4y=-1,2x-4y=4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&4\\2&-4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-4\times 2}&-\frac{4}{-4-4\times 2}\\-\frac{2}{-4-4\times 2}&\frac{1}{-4-4\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{6}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 4\\\frac{1}{6}\left(-1\right)-\frac{1}{12}\times 4\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=-\frac{1}{2}
ამოიღეთ მატრიცის ელემენტები - x და y.
x+4y=-1,2x-4y=4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+2\times 4y=2\left(-1\right),2x-4y=4
იმისათვის, რომ x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
2x+8y=-2,2x-4y=4
გაამარტივეთ.
2x-2x+8y+4y=-2-4
გამოაკელით 2x-4y=4 2x+8y=-2-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
8y+4y=-2-4
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
12y=-2-4
მიუმატეთ 8y 4y-ს.
12y=-6
მიუმატეთ -2 -4-ს.
y=-\frac{1}{2}
ორივე მხარე გაყავით 12-ზე.
2x-4\left(-\frac{1}{2}\right)=4
ჩაანაცვლეთ -\frac{1}{2}-ით y აქ: 2x-4y=4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x+2=4
გაამრავლეთ -4-ზე -\frac{1}{2}.
2x=2
გამოაკელით 2 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 2-ზე.
x=1,y=-\frac{1}{2}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}