\left\{ \begin{array} { l } { a _ { n } = - \frac { 3 ( n - 1 ) } { 3 - 2 n } } \\ { n = 5 } \end{array} \right.
ამოხსნა a_n, n-ისთვის
a_{n} = \frac{12}{7} = 1\frac{5}{7} \approx 1.714285714
n=5
გაზიარება
კოპირებულია ბუფერში
a_{n}=-\frac{3\left(5-1\right)}{3-2\times 5}
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
a_{n}=-\frac{3\times 4}{3-2\times 5}
გამოაკელით 1 5-ს 4-ის მისაღებად.
a_{n}=-\frac{12}{3-2\times 5}
გადაამრავლეთ 3 და 4, რათა მიიღოთ 12.
a_{n}=-\frac{12}{3-10}
გადაამრავლეთ -2 და 5, რათა მიიღოთ -10.
a_{n}=-\frac{12}{-7}
გამოაკელით 10 3-ს -7-ის მისაღებად.
a_{n}=-\left(-\frac{12}{7}\right)
წილადი \frac{12}{-7} შეიძლება ჩაიწეროს როგორც -\frac{12}{7} უარყოფითი ნიშნის მოცილებით.
a_{n}=\frac{12}{7}
-\frac{12}{7}-ის საპირისპიროა \frac{12}{7}.
a_{n}=\frac{12}{7} n=5
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}