მთავარ კონტენტზე გადასვლა
ამოხსნა a, b-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=3,a-b=7
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
a+b=3
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი a-ისთვის, a-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
a=-b+3
გამოაკელით b განტოლების ორივე მხარეს.
-b+3-b=7
ჩაანაცვლეთ -b+3-ით a მეორე განტოლებაში, a-b=7.
-2b+3=7
მიუმატეთ -b -b-ს.
-2b=4
გამოაკელით 3 განტოლების ორივე მხარეს.
b=-2
ორივე მხარე გაყავით -2-ზე.
a=-\left(-2\right)+3
ჩაანაცვლეთ -2-ით b აქ: a=-b+3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ a.
a=2+3
გაამრავლეთ -1-ზე -2.
a=5
მიუმატეთ 3 2-ს.
a=5,b=-2
სისტემა ახლა ამოხსნილია.
a+b=3,a-b=7
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\1&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 7\\\frac{1}{2}\times 3-\frac{1}{2}\times 7\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
a=5,b=-2
ამოიღეთ მატრიცის ელემენტები - a და b.
a+b=3,a-b=7
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
a-a+b+b=3-7
გამოაკელით a-b=7 a+b=3-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
b+b=3-7
მიუმატეთ a -a-ს. პირობები a და -a გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
2b=3-7
მიუმატეთ b b-ს.
2b=-4
მიუმატეთ 3 -7-ს.
b=-2
ორივე მხარე გაყავით 2-ზე.
a-\left(-2\right)=7
ჩაანაცვლეთ -2-ით b აქ: a-b=7. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ a.
a+2=7
გაამრავლეთ -1-ზე -2.
a=5
გამოაკელით 2 განტოლების ორივე მხარეს.
a=5,b=-2
სისტემა ახლა ამოხსნილია.