\left\{ \begin{array} { l } { a + 4 b = 8 } \\ { 3 b = 5 - a } \end{array} \right.
ამოხსნა a, b-ისთვის
a=-4
b=3
გაზიარება
კოპირებულია ბუფერში
3b+a=5
განიხილეთ პირველი განტოლება. დაამატეთ a ორივე მხარეს.
a+4b=8,a+3b=5
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
a+4b=8
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი a-ისთვის, a-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
a=-4b+8
გამოაკელით 4b განტოლების ორივე მხარეს.
-4b+8+3b=5
ჩაანაცვლეთ -4b+8-ით a მეორე განტოლებაში, a+3b=5.
-b+8=5
მიუმატეთ -4b 3b-ს.
-b=-3
გამოაკელით 8 განტოლების ორივე მხარეს.
b=3
ორივე მხარე გაყავით -1-ზე.
a=-4\times 3+8
ჩაანაცვლეთ 3-ით b აქ: a=-4b+8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ a.
a=-12+8
გაამრავლეთ -4-ზე 3.
a=-4
მიუმატეთ 8 -12-ს.
a=-4,b=3
სისტემა ახლა ამოხსნილია.
3b+a=5
განიხილეთ პირველი განტოლება. დაამატეთ a ორივე მხარეს.
a+4b=8,a+3b=5
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&4\\1&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}1&4\\1&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&4\\1&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&3\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{1}{3-4}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3&4\\1&-1\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\times 8+4\times 5\\8-5\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
a=-4,b=3
ამოიღეთ მატრიცის ელემენტები - a და b.
3b+a=5
განიხილეთ პირველი განტოლება. დაამატეთ a ორივე მხარეს.
a+4b=8,a+3b=5
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
a-a+4b-3b=8-5
გამოაკელით a+3b=5 a+4b=8-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
4b-3b=8-5
მიუმატეთ a -a-ს. პირობები a და -a გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
b=8-5
მიუმატეთ 4b -3b-ს.
b=3
მიუმატეთ 8 -5-ს.
a+3\times 3=5
ჩაანაცვლეთ 3-ით b აქ: a+3b=5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ a.
a+9=5
გაამრავლეთ 3-ზე 3.
a=-4
გამოაკელით 9 განტოლების ორივე მხარეს.
a=-4,b=3
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}