\left\{ \begin{array} { l } { S = - \frac { 3 } { 2 } m ^ { 2 } + \frac { 9 } { 2 } m + \frac { 9 } { 2 } } \\ { m = \frac { 3 } { 2 } } \end{array} \right.
ამოხსნა S, m-ისთვის
S = \frac{63}{8} = 7\frac{7}{8} = 7.875
m = \frac{3}{2} = 1\frac{1}{2} = 1.5
გაზიარება
კოპირებულია ბუფერში
S=-\frac{3}{2}\times \left(\frac{3}{2}\right)^{2}+\frac{9}{2}\times \frac{3}{2}+\frac{9}{2}
განიხილეთ პირველი განტოლება. ჩასვით ცვლადების ცნობილი მნიშვნელობები განტოლებაში.
S=-\frac{3}{2}\times \frac{9}{4}+\frac{9}{2}\times \frac{3}{2}+\frac{9}{2}
გამოთვალეთ2-ის \frac{3}{2} ხარისხი და მიიღეთ \frac{9}{4}.
S=-\frac{27}{8}+\frac{9}{2}\times \frac{3}{2}+\frac{9}{2}
გადაამრავლეთ -\frac{3}{2} და \frac{9}{4}, რათა მიიღოთ -\frac{27}{8}.
S=-\frac{27}{8}+\frac{27}{4}+\frac{9}{2}
გადაამრავლეთ \frac{9}{2} და \frac{3}{2}, რათა მიიღოთ \frac{27}{4}.
S=\frac{27}{8}+\frac{9}{2}
შეკრიბეთ -\frac{27}{8} და \frac{27}{4}, რათა მიიღოთ \frac{27}{8}.
S=\frac{63}{8}
შეკრიბეთ \frac{27}{8} და \frac{9}{2}, რათა მიიღოთ \frac{63}{8}.
S=\frac{63}{8} m=\frac{3}{2}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}