\left\{ \begin{array} { l } { 5 x - y = 13 } \\ { 2 x + 3 y = 12 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=3
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
5x-y=13,2x+3y=12
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x-y=13
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=y+13
მიუმატეთ y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(y+13\right)
ორივე მხარე გაყავით 5-ზე.
x=\frac{1}{5}y+\frac{13}{5}
გაამრავლეთ \frac{1}{5}-ზე y+13.
2\left(\frac{1}{5}y+\frac{13}{5}\right)+3y=12
ჩაანაცვლეთ \frac{13+y}{5}-ით x მეორე განტოლებაში, 2x+3y=12.
\frac{2}{5}y+\frac{26}{5}+3y=12
გაამრავლეთ 2-ზე \frac{13+y}{5}.
\frac{17}{5}y+\frac{26}{5}=12
მიუმატეთ \frac{2y}{5} 3y-ს.
\frac{17}{5}y=\frac{34}{5}
გამოაკელით \frac{26}{5} განტოლების ორივე მხარეს.
y=2
განტოლების ორივე მხარე გაყავით \frac{17}{5}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1}{5}\times 2+\frac{13}{5}
ჩაანაცვლეთ 2-ით y აქ: x=\frac{1}{5}y+\frac{13}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{2+13}{5}
გაამრავლეთ \frac{1}{5}-ზე 2.
x=3
მიუმატეთ \frac{13}{5} \frac{2}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=2
სისტემა ახლა ამოხსნილია.
5x-y=13,2x+3y=12
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\12\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&-1\\2&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-1}{5\times 3-\left(-2\right)}\\-\frac{2}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{1}{17}\\-\frac{2}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 13+\frac{1}{17}\times 12\\-\frac{2}{17}\times 13+\frac{5}{17}\times 12\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
5x-y=13,2x+3y=12
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 5x+2\left(-1\right)y=2\times 13,5\times 2x+5\times 3y=5\times 12
იმისათვის, რომ 5x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 5-ზე.
10x-2y=26,10x+15y=60
გაამარტივეთ.
10x-10x-2y-15y=26-60
გამოაკელით 10x+15y=60 10x-2y=26-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2y-15y=26-60
მიუმატეთ 10x -10x-ს. პირობები 10x და -10x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-17y=26-60
მიუმატეთ -2y -15y-ს.
-17y=-34
მიუმატეთ 26 -60-ს.
y=2
ორივე მხარე გაყავით -17-ზე.
2x+3\times 2=12
ჩაანაცვლეთ 2-ით y აქ: 2x+3y=12. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x+6=12
გაამრავლეთ 3-ზე 2.
2x=6
გამოაკელით 6 განტოლების ორივე მხარეს.
x=3
ორივე მხარე გაყავით 2-ზე.
x=3,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}