\left\{ \begin{array} { l } { 5 x + 3 y = - 2 } \\ { 2 x - 2 y = - 4 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=-1
y=1
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
5x+3y=-2,2x-2y=-4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x+3y=-2
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=-3y-2
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(-3y-2\right)
ორივე მხარე გაყავით 5-ზე.
x=-\frac{3}{5}y-\frac{2}{5}
გაამრავლეთ \frac{1}{5}-ზე -3y-2.
2\left(-\frac{3}{5}y-\frac{2}{5}\right)-2y=-4
ჩაანაცვლეთ \frac{-3y-2}{5}-ით x მეორე განტოლებაში, 2x-2y=-4.
-\frac{6}{5}y-\frac{4}{5}-2y=-4
გაამრავლეთ 2-ზე \frac{-3y-2}{5}.
-\frac{16}{5}y-\frac{4}{5}=-4
მიუმატეთ -\frac{6y}{5} -2y-ს.
-\frac{16}{5}y=-\frac{16}{5}
მიუმატეთ \frac{4}{5} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით -\frac{16}{5}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{-3-2}{5}
ჩაანაცვლეთ 1-ით y აქ: x=-\frac{3}{5}y-\frac{2}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-1
მიუმატეთ -\frac{2}{5} -\frac{3}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=-1,y=1
სისტემა ახლა ამოხსნილია.
5x+3y=-2,2x-2y=-4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&3\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}5&3\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&3\\2&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-3\times 2}&-\frac{3}{5\left(-2\right)-3\times 2}\\-\frac{2}{5\left(-2\right)-3\times 2}&\frac{5}{5\left(-2\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}-2\\-4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{16}\\\frac{1}{8}&-\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}-2\\-4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\left(-2\right)+\frac{3}{16}\left(-4\right)\\\frac{1}{8}\left(-2\right)-\frac{5}{16}\left(-4\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-1,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
5x+3y=-2,2x-2y=-4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 5x+2\times 3y=2\left(-2\right),5\times 2x+5\left(-2\right)y=5\left(-4\right)
იმისათვის, რომ 5x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 5-ზე.
10x+6y=-4,10x-10y=-20
გაამარტივეთ.
10x-10x+6y+10y=-4+20
გამოაკელით 10x-10y=-20 10x+6y=-4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
6y+10y=-4+20
მიუმატეთ 10x -10x-ს. პირობები 10x და -10x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
16y=-4+20
მიუმატეთ 6y 10y-ს.
16y=16
მიუმატეთ -4 20-ს.
y=1
ორივე მხარე გაყავით 16-ზე.
2x-2=-4
ჩაანაცვლეთ 1-ით y აქ: 2x-2y=-4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=-2
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=-1
ორივე მხარე გაყავით 2-ზე.
x=-1,y=1
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}