მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x-y=4,x-y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=y+4
მიუმატეთ y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(y+4\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{1}{3}y+\frac{4}{3}
გაამრავლეთ \frac{1}{3}-ზე y+4.
\frac{1}{3}y+\frac{4}{3}-y=1
ჩაანაცვლეთ \frac{4+y}{3}-ით x მეორე განტოლებაში, x-y=1.
-\frac{2}{3}y+\frac{4}{3}=1
მიუმატეთ \frac{y}{3} -y-ს.
-\frac{2}{3}y=-\frac{1}{3}
გამოაკელით \frac{4}{3} განტოლების ორივე მხარეს.
y=\frac{1}{2}
განტოლების ორივე მხარე გაყავით -\frac{2}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1}{3}\times \frac{1}{2}+\frac{4}{3}
ჩაანაცვლეთ \frac{1}{2}-ით y აქ: x=\frac{1}{3}y+\frac{4}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{1}{6}+\frac{4}{3}
გაამრავლეთ \frac{1}{3}-ზე \frac{1}{2} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{3}{2}
მიუმატეთ \frac{4}{3} \frac{1}{6}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{3}{2},y=\frac{1}{2}
სისტემა ახლა ამოხსნილია.
3x-y=4,x-y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4-\frac{1}{2}\\\frac{1}{2}\times 4-\frac{3}{2}\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{3}{2},y=\frac{1}{2}
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-y=4,x-y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-x-y+y=4-1
გამოაკელით x-y=1 3x-y=4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3x-x=4-1
მიუმატეთ -y y-ს. პირობები -y და y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
2x=4-1
მიუმატეთ 3x -x-ს.
2x=3
მიუმატეთ 4 -1-ს.
x=\frac{3}{2}
ორივე მხარე გაყავით 2-ზე.
\frac{3}{2}-y=1
ჩაანაცვლეთ \frac{3}{2}-ით x აქ: x-y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
-y=-\frac{1}{2}
გამოაკელით \frac{3}{2} განტოლების ორივე მხარეს.
x=\frac{3}{2},y=\frac{1}{2}
სისტემა ახლა ამოხსნილია.