\left\{ \begin{array} { l } { 3 x - 5 y = 11 } \\ { x + 3 y = 13 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=7
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
3x-5y=11,x+3y=13
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-5y=11
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=5y+11
მიუმატეთ 5y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(5y+11\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{5}{3}y+\frac{11}{3}
გაამრავლეთ \frac{1}{3}-ზე 5y+11.
\frac{5}{3}y+\frac{11}{3}+3y=13
ჩაანაცვლეთ \frac{5y+11}{3}-ით x მეორე განტოლებაში, x+3y=13.
\frac{14}{3}y+\frac{11}{3}=13
მიუმატეთ \frac{5y}{3} 3y-ს.
\frac{14}{3}y=\frac{28}{3}
გამოაკელით \frac{11}{3} განტოლების ორივე მხარეს.
y=2
განტოლების ორივე მხარე გაყავით \frac{14}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{5}{3}\times 2+\frac{11}{3}
ჩაანაცვლეთ 2-ით y აქ: x=\frac{5}{3}y+\frac{11}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{10+11}{3}
გაამრავლეთ \frac{5}{3}-ზე 2.
x=7
მიუმატეთ \frac{11}{3} \frac{10}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=7,y=2
სისტემა ახლა ამოხსნილია.
3x-5y=11,x+3y=13
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-5\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\13\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}3&-5\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-5\\1&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\1&3\end{matrix}\right))\left(\begin{matrix}11\\13\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-5}{3\times 3-\left(-5\right)}\\-\frac{1}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\13\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\13\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{5}{14}\times 13\\-\frac{1}{14}\times 11+\frac{3}{14}\times 13\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=7,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-5y=11,x+3y=13
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-5y=11,3x+3\times 3y=3\times 13
იმისათვის, რომ 3x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
3x-5y=11,3x+9y=39
გაამარტივეთ.
3x-3x-5y-9y=11-39
გამოაკელით 3x+9y=39 3x-5y=11-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-5y-9y=11-39
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-14y=11-39
მიუმატეთ -5y -9y-ს.
-14y=-28
მიუმატეთ 11 -39-ს.
y=2
ორივე მხარე გაყავით -14-ზე.
x+3\times 2=13
ჩაანაცვლეთ 2-ით y აქ: x+3y=13. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x+6=13
გაამრავლეთ 3-ზე 2.
x=7
გამოაკელით 6 განტოლების ორივე მხარეს.
x=7,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}