მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x-2y=4,2x-y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-2y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=2y+4
მიუმატეთ 2y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(2y+4\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{2}{3}y+\frac{4}{3}
გაამრავლეთ \frac{1}{3}-ზე 4+2y.
2\left(\frac{2}{3}y+\frac{4}{3}\right)-y=1
ჩაანაცვლეთ \frac{4+2y}{3}-ით x მეორე განტოლებაში, 2x-y=1.
\frac{4}{3}y+\frac{8}{3}-y=1
გაამრავლეთ 2-ზე \frac{4+2y}{3}.
\frac{1}{3}y+\frac{8}{3}=1
მიუმატეთ \frac{4y}{3} -y-ს.
\frac{1}{3}y=-\frac{5}{3}
გამოაკელით \frac{8}{3} განტოლების ორივე მხარეს.
y=-5
ორივე მხარე გაამრავლეთ 3-ზე.
x=\frac{2}{3}\left(-5\right)+\frac{4}{3}
ჩაანაცვლეთ -5-ით y აქ: x=\frac{2}{3}y+\frac{4}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-10+4}{3}
გაამრავლეთ \frac{2}{3}-ზე -5.
x=-2
მიუმატეთ \frac{4}{3} -\frac{10}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=-2,y=-5
სისტემა ახლა ამოხსნილია.
3x-2y=4,2x-y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 2\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 2\right)}\\-\frac{2}{3\left(-1\right)-\left(-2\times 2\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+2\\-2\times 4+3\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-2,y=-5
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-2y=4,2x-y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 3x+2\left(-2\right)y=2\times 4,3\times 2x+3\left(-1\right)y=3
იმისათვის, რომ 3x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
6x-4y=8,6x-3y=3
გაამარტივეთ.
6x-6x-4y+3y=8-3
გამოაკელით 6x-3y=3 6x-4y=8-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y+3y=8-3
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-y=8-3
მიუმატეთ -4y 3y-ს.
-y=5
მიუმატეთ 8 -3-ს.
y=-5
ორივე მხარე გაყავით -1-ზე.
2x-\left(-5\right)=1
ჩაანაცვლეთ -5-ით y აქ: 2x-y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=-4
გამოაკელით 5 განტოლების ორივე მხარეს.
x=-2
ორივე მხარე გაყავით 2-ზე.
x=-2,y=-5
სისტემა ახლა ამოხსნილია.