მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+y=6,x+3y=6
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-y+6
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-y+6\right)
ორივე მხარე გაყავით 3-ზე.
x=-\frac{1}{3}y+2
გაამრავლეთ \frac{1}{3}-ზე -y+6.
-\frac{1}{3}y+2+3y=6
ჩაანაცვლეთ -\frac{y}{3}+2-ით x მეორე განტოლებაში, x+3y=6.
\frac{8}{3}y+2=6
მიუმატეთ -\frac{y}{3} 3y-ს.
\frac{8}{3}y=4
გამოაკელით 2 განტოლების ორივე მხარეს.
y=\frac{3}{2}
განტოლების ორივე მხარე გაყავით \frac{8}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{3}\times \frac{3}{2}+2
ჩაანაცვლეთ \frac{3}{2}-ით y აქ: x=-\frac{1}{3}y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-\frac{1}{2}+2
გაამრავლეთ -\frac{1}{3}-ზე \frac{3}{2} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{3}{2}
მიუმატეთ 2 -\frac{1}{2}-ს.
x=\frac{3}{2},y=\frac{3}{2}
სისტემა ახლა ამოხსნილია.
3x+y=6,x+3y=6
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&1\\1&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-1}&-\frac{1}{3\times 3-1}\\-\frac{1}{3\times 3-1}&\frac{3}{3\times 3-1}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 6-\frac{1}{8}\times 6\\-\frac{1}{8}\times 6+\frac{3}{8}\times 6\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{3}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{3}{2},y=\frac{3}{2}
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+y=6,x+3y=6
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+y=6,3x+3\times 3y=3\times 6
იმისათვის, რომ 3x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
3x+y=6,3x+9y=18
გაამარტივეთ.
3x-3x+y-9y=6-18
გამოაკელით 3x+9y=18 3x+y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
y-9y=6-18
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-8y=6-18
მიუმატეთ y -9y-ს.
-8y=-12
მიუმატეთ 6 -18-ს.
y=\frac{3}{2}
ორივე მხარე გაყავით -8-ზე.
x+3\times \frac{3}{2}=6
ჩაანაცვლეთ \frac{3}{2}-ით y აქ: x+3y=6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x+\frac{9}{2}=6
გაამრავლეთ 3-ზე \frac{3}{2}.
x=\frac{3}{2}
გამოაკელით \frac{9}{2} განტოლების ორივე მხარეს.
x=\frac{3}{2},y=\frac{3}{2}
სისტემა ახლა ამოხსნილია.