\left\{ \begin{array} { l } { 3 x + y + 2 z = 25 } \\ { x + 3 y + z = 12 } \\ { x + y + z = 7 } \end{array} \right.
ამოხსნა x, y, z-ისთვის
x = \frac{27}{2} = 13\frac{1}{2} = 13.5
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
z=-9
გაზიარება
კოპირებულია ბუფერში
y=-3x-2z+25
ამოხსენით 3x+y+2z=25 y-თვის.
x+3\left(-3x-2z+25\right)+z=12 x-3x-2z+25+z=7
ჩაანაცვლეთ -3x-2z+25-ით y მეორე და მესამე განტოლებაში.
x=-\frac{5}{8}z+\frac{63}{8} z=-2x+18
ამოხსენით ეს განტოლება x-თვის და z-თვის შესაბამისად.
z=-2\left(-\frac{5}{8}z+\frac{63}{8}\right)+18
ჩაანაცვლეთ -\frac{5}{8}z+\frac{63}{8}-ით x განტოლებაში, z=-2x+18.
z=-9
ამოხსენით z=-2\left(-\frac{5}{8}z+\frac{63}{8}\right)+18 z-თვის.
x=-\frac{5}{8}\left(-9\right)+\frac{63}{8}
ჩაანაცვლეთ -9-ით z განტოლებაში, x=-\frac{5}{8}z+\frac{63}{8}.
x=\frac{27}{2}
გამოითვალეთ x x=-\frac{5}{8}\left(-9\right)+\frac{63}{8}-დან.
y=-3\times \frac{27}{2}-2\left(-9\right)+25
ჩაანაცვლეთ \frac{27}{2}-ით x და -9-ით z განტოლებაში, y=-3x-2z+25.
y=\frac{5}{2}
გამოითვალეთ y y=-3\times \frac{27}{2}-2\left(-9\right)+25-დან.
x=\frac{27}{2} y=\frac{5}{2} z=-9
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}