\left\{ \begin{array} { l } { 3 x + 2 y + z = 11 } \\ { 5 x + 3 y + 4 z = 2 } \\ { x + y - z = 1 } \end{array} \right.
ამოხსნა x, y, z-ისთვის
x=66
y=-84
z=-19
გაზიარება
კოპირებულია ბუფერში
z=-3x-2y+11
ამოხსენით 3x+2y+z=11 z-თვის.
5x+3y+4\left(-3x-2y+11\right)=2 x+y-\left(-3x-2y+11\right)=1
ჩაანაცვლეთ -3x-2y+11-ით z მეორე და მესამე განტოლებაში.
y=\frac{42}{5}-\frac{7}{5}x x=3-\frac{3}{4}y
ამოხსენით ეს განტოლება y-თვის და x-თვის შესაბამისად.
x=3-\frac{3}{4}\left(\frac{42}{5}-\frac{7}{5}x\right)
ჩაანაცვლეთ \frac{42}{5}-\frac{7}{5}x-ით y განტოლებაში, x=3-\frac{3}{4}y.
x=66
ამოხსენით x=3-\frac{3}{4}\left(\frac{42}{5}-\frac{7}{5}x\right) x-თვის.
y=\frac{42}{5}-\frac{7}{5}\times 66
ჩაანაცვლეთ 66-ით x განტოლებაში, y=\frac{42}{5}-\frac{7}{5}x.
y=-84
გამოითვალეთ y y=\frac{42}{5}-\frac{7}{5}\times 66-დან.
z=-3\times 66-2\left(-84\right)+11
ჩაანაცვლეთ -84-ით y და 66-ით x განტოლებაში, z=-3x-2y+11.
z=-19
გამოითვალეთ z z=-3\times 66-2\left(-84\right)+11-დან.
x=66 y=-84 z=-19
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}