\left\{ \begin{array} { l } { 2 x + 3 y = 38 } \\ { - 3 x + 2 y = 21 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=1
y=12
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+3y=38,-3x+2y=21
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+3y=38
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-3y+38
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-3y+38\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{3}{2}y+19
გაამრავლეთ \frac{1}{2}-ზე -3y+38.
-3\left(-\frac{3}{2}y+19\right)+2y=21
ჩაანაცვლეთ -\frac{3y}{2}+19-ით x მეორე განტოლებაში, -3x+2y=21.
\frac{9}{2}y-57+2y=21
გაამრავლეთ -3-ზე -\frac{3y}{2}+19.
\frac{13}{2}y-57=21
მიუმატეთ \frac{9y}{2} 2y-ს.
\frac{13}{2}y=78
მიუმატეთ 57 განტოლების ორივე მხარეს.
y=12
განტოლების ორივე მხარე გაყავით \frac{13}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{3}{2}\times 12+19
ჩაანაცვლეთ 12-ით y აქ: x=-\frac{3}{2}y+19. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-18+19
გაამრავლეთ -\frac{3}{2}-ზე 12.
x=1
მიუმატეთ 19 -18-ს.
x=1,y=12
სისტემა ახლა ამოხსნილია.
2x+3y=38,-3x+2y=21
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&3\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}38\\21\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&3\\-3&2\end{matrix}\right))\left(\begin{matrix}2&3\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&2\end{matrix}\right))\left(\begin{matrix}38\\21\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&3\\-3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&2\end{matrix}\right))\left(\begin{matrix}38\\21\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-3&2\end{matrix}\right))\left(\begin{matrix}38\\21\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\left(-3\right)}&-\frac{3}{2\times 2-3\left(-3\right)}\\-\frac{-3}{2\times 2-3\left(-3\right)}&\frac{2}{2\times 2-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}38\\21\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&-\frac{3}{13}\\\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}38\\21\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 38-\frac{3}{13}\times 21\\\frac{3}{13}\times 38+\frac{2}{13}\times 21\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=12
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+3y=38,-3x+2y=21
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-3\times 2x-3\times 3y=-3\times 38,2\left(-3\right)x+2\times 2y=2\times 21
იმისათვის, რომ 2x და -3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
-6x-9y=-114,-6x+4y=42
გაამარტივეთ.
-6x+6x-9y-4y=-114-42
გამოაკელით -6x+4y=42 -6x-9y=-114-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-9y-4y=-114-42
მიუმატეთ -6x 6x-ს. პირობები -6x და 6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-13y=-114-42
მიუმატეთ -9y -4y-ს.
-13y=-156
მიუმატეთ -114 -42-ს.
y=12
ორივე მხარე გაყავით -13-ზე.
-3x+2\times 12=21
ჩაანაცვლეთ 12-ით y აქ: -3x+2y=21. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-3x+24=21
გაამრავლეთ 2-ზე 12.
-3x=-3
გამოაკელით 24 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით -3-ზე.
x=1,y=12
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}