\left\{ \begin{array} { l } { 2 m - 3 n = 1 } \\ { \frac { 15 } { 9 } m - 2 n = 1 } \end{array} \right.
ამოხსნა m, n-ისთვის
m=1
n=\frac{1}{3}\approx 0.333333333
გაზიარება
კოპირებულია ბუფერში
2m-3n=1,\frac{5}{3}m-2n=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2m-3n=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი m-ისთვის, m-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2m=3n+1
მიუმატეთ 3n განტოლების ორივე მხარეს.
m=\frac{1}{2}\left(3n+1\right)
ორივე მხარე გაყავით 2-ზე.
m=\frac{3}{2}n+\frac{1}{2}
გაამრავლეთ \frac{1}{2}-ზე 3n+1.
\frac{5}{3}\left(\frac{3}{2}n+\frac{1}{2}\right)-2n=1
ჩაანაცვლეთ \frac{3n+1}{2}-ით m მეორე განტოლებაში, \frac{5}{3}m-2n=1.
\frac{5}{2}n+\frac{5}{6}-2n=1
გაამრავლეთ \frac{5}{3}-ზე \frac{3n+1}{2}.
\frac{1}{2}n+\frac{5}{6}=1
მიუმატეთ \frac{5n}{2} -2n-ს.
\frac{1}{2}n=\frac{1}{6}
გამოაკელით \frac{5}{6} განტოლების ორივე მხარეს.
n=\frac{1}{3}
ორივე მხარე გაამრავლეთ 2-ზე.
m=\frac{3}{2}\times \frac{1}{3}+\frac{1}{2}
ჩაანაცვლეთ \frac{1}{3}-ით n აქ: m=\frac{3}{2}n+\frac{1}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ m.
m=\frac{1+1}{2}
გაამრავლეთ \frac{3}{2}-ზე \frac{1}{3} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
m=1
მიუმატეთ \frac{1}{2} \frac{1}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
m=1,n=\frac{1}{3}
სისტემა ახლა ამოხსნილია.
2m-3n=1,\frac{5}{3}m-2n=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}\\-\frac{\frac{5}{3}}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}&\frac{2}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2&3\\-\frac{5}{3}&2\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2+3\\-\frac{5}{3}+2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{3}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
m=1,n=\frac{1}{3}
ამოიღეთ მატრიცის ელემენტები - m და n.
2m-3n=1,\frac{5}{3}m-2n=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
\frac{5}{3}\times 2m+\frac{5}{3}\left(-3\right)n=\frac{5}{3},2\times \frac{5}{3}m+2\left(-2\right)n=2
იმისათვის, რომ 2m და \frac{5m}{3} ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს \frac{5}{3}-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
\frac{10}{3}m-5n=\frac{5}{3},\frac{10}{3}m-4n=2
გაამარტივეთ.
\frac{10}{3}m-\frac{10}{3}m-5n+4n=\frac{5}{3}-2
გამოაკელით \frac{10}{3}m-4n=2 \frac{10}{3}m-5n=\frac{5}{3}-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-5n+4n=\frac{5}{3}-2
მიუმატეთ \frac{10m}{3} -\frac{10m}{3}-ს. პირობები \frac{10m}{3} და -\frac{10m}{3} გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-n=\frac{5}{3}-2
მიუმატეთ -5n 4n-ს.
-n=-\frac{1}{3}
მიუმატეთ \frac{5}{3} -2-ს.
n=\frac{1}{3}
ორივე მხარე გაყავით -1-ზე.
\frac{5}{3}m-2\times \frac{1}{3}=1
ჩაანაცვლეთ \frac{1}{3}-ით n აქ: \frac{5}{3}m-2n=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ m.
\frac{5}{3}m-\frac{2}{3}=1
გაამრავლეთ -2-ზე \frac{1}{3}.
\frac{5}{3}m=\frac{5}{3}
მიუმატეთ \frac{2}{3} განტოლების ორივე მხარეს.
m=1
განტოლების ორივე მხარე გაყავით \frac{5}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
m=1,n=\frac{1}{3}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}