მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+y=3,2x-y=0
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=3
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y+3
გამოაკელით y განტოლების ორივე მხარეს.
2\left(-y+3\right)-y=0
ჩაანაცვლეთ -y+3-ით x მეორე განტოლებაში, 2x-y=0.
-2y+6-y=0
გაამრავლეთ 2-ზე -y+3.
-3y+6=0
მიუმატეთ -2y -y-ს.
-3y=-6
გამოაკელით 6 განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაყავით -3-ზე.
x=-2+3
ჩაანაცვლეთ 2-ით y აქ: x=-y+3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1
მიუმატეთ 3 -2-ს.
x=1,y=2
სისტემა ახლა ამოხსნილია.
x+y=3,2x-y=0
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\2&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3\\\frac{2}{3}\times 3\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
x+y=3,2x-y=0
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+2y=2\times 3,2x-y=0
იმისათვის, რომ x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
2x+2y=6,2x-y=0
გაამარტივეთ.
2x-2x+2y+y=6
გამოაკელით 2x-y=0 2x+2y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2y+y=6
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
3y=6
მიუმატეთ 2y y-ს.
y=2
ორივე მხარე გაყავით 3-ზე.
2x-2=0
ჩაანაცვლეთ 2-ით y აქ: 2x-y=0. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=2
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 2-ზე.
x=1,y=2
სისტემა ახლა ამოხსნილია.