მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int _{0}^{5}\frac{1}{2}x+2\mathrm{d}x
დააჯგუფეთ x და -\frac{x}{2}, რათა მიიღოთ \frac{1}{2}x.
\int \frac{x}{2}+2\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int \frac{x}{2}\mathrm{d}x+\int 2\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\frac{\int x\mathrm{d}x}{2}+\int 2\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{2}}{4}+\int 2\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ \frac{1}{2}-ზე \frac{x^{2}}{2}.
\frac{x^{2}}{4}+2x
იპოვეთ2-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{5^{2}}{4}+2\times 5-\left(\frac{0^{2}}{4}+2\times 0\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{65}{4}
გაამარტივეთ.