შეფასება
\frac{7}{6}\approx 1.166666667
ვიქტორინა
Integration
5 მსგავსი პრობლემები:
\int_{ 0 }^{ 1 } (2x+2-1-2 { x }^{ 2 } -2 { x }^{ 2 } +x) d x
გაზიარება
კოპირებულია ბუფერში
\int 2x+2-1-2x^{2}-2x^{2}+x\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int 2x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int x\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
2\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
x^{2}+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ 2-ზე \frac{x^{2}}{2}.
x^{2}+2x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
იპოვეთ2-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
x^{2}+2x-x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
იპოვეთ-1-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
x^{2}+2x-x-\frac{2x^{3}}{3}-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ -2-ზე \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\int x\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ -2-ზე \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\frac{x^{2}}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით.
\frac{3x^{2}}{2}+x-\frac{4x^{3}}{3}
გაამარტივეთ.
\frac{3}{2}\times 1^{2}+1-\frac{4}{3}\times 1^{3}-\left(\frac{3}{2}\times 0^{2}+0-\frac{4}{3}\times 0^{3}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{7}{6}
გაამარტივეთ.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}