შეფასება
\frac{2\sqrt{2}\pi ^{\frac{5}{2}}}{5}\approx 9.89577178
გაზიარება
კოპირებულია ბუფერში
\int \sqrt{2x^{3}}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\sqrt{2}\int \sqrt{x^{3}}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ის მეშვეობით.
\sqrt{2}\times \frac{2x^{\frac{5}{2}}}{5}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{\frac{3}{2}}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{2x^{\frac{5}{2}}}{5}-ით.
\frac{2\sqrt{2}x^{\frac{5}{2}}}{5}
გაამარტივეთ.
\frac{2}{5}\times 2^{\frac{1}{2}}\pi ^{\frac{5}{2}}-\frac{2}{5}\times 2^{\frac{1}{2}}\times 0^{\frac{5}{2}}
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{\left(2\pi \right)^{\frac{5}{2}}}{10}
გაამარტივეთ.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}