შეფასება
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}+С
დიფერენცირება x-ის მიმართ
2\sqrt{x}-\sqrt[4]{x}
გაზიარება
კოპირებულია ბუფერში
\int 2\sqrt{x}\mathrm{d}x+\int -\sqrt[4]{x}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
2\int \sqrt{x}\mathrm{d}x-\int \sqrt[4]{x}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{4x^{\frac{3}{2}}}{3}-\int \sqrt[4]{x}\mathrm{d}x
ხელახლა დაწერეთ \sqrt{x}, როგორც x^{\frac{1}{2}}. რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{\frac{1}{2}}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{\frac{3}{2}}}{\frac{3}{2}}-ით. გაამარტივეთ. გაამრავლეთ 2-ზე \frac{2x^{\frac{3}{2}}}{3}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}
ხელახლა დაწერეთ \sqrt[4]{x}, როგორც x^{\frac{1}{4}}. რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{\frac{1}{4}}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{\frac{5}{4}}}{\frac{5}{4}}-ით. გაამარტივეთ. გაამრავლეთ -1-ზე \frac{4x^{\frac{5}{4}}}{5}.
\frac{4x^{\frac{3}{2}}}{3}-\frac{4x^{\frac{5}{4}}}{5}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}