მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 27x^{3}+54x^{2}+36x+8\mathrm{d}x
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ბინომიალური თეორემის გამოყენება \left(3x+2\right)^{3}-ის გასაშლელად.
\int 27x^{3}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 36x\mathrm{d}x+\int 8\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
27\int x^{3}\mathrm{d}x+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{27x^{4}}{4}+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით. გაამრავლეთ 27-ზე \frac{x^{4}}{4}.
\frac{27x^{4}}{4}+18x^{3}+36\int x\mathrm{d}x+\int 8\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ 54-ზე \frac{x^{3}}{3}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+\int 8\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ 36-ზე \frac{x^{2}}{2}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x
იპოვეთ8-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.