მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int \frac{x^{3}}{4}\mathrm{d}x+\int -\frac{x^{2}}{3}\mathrm{d}x+\int \frac{x}{2}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\frac{\int x^{3}\mathrm{d}x}{4}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{4}}{16}-\frac{\int x^{2}\mathrm{d}x}{3}+\frac{\int x\mathrm{d}x}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით. გაამრავლეთ \frac{1}{4}-ზე \frac{x^{4}}{4}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{\int x\mathrm{d}x}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ -\frac{1}{3}-ზე \frac{x^{3}}{3}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ \frac{1}{2}-ზე \frac{x^{2}}{2}.
\frac{x^{4}}{16}-\frac{x^{3}}{9}+\frac{x^{2}}{4}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.