მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x+\int -20x\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x-20\int x\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{6}}{6}+\int x^{3}\mathrm{d}x-20\int x\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{5}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{6}}{6}-ით.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-20\int x\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-10x^{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ -20-ზე \frac{x^{2}}{2}.
\frac{x^{6}}{6}+\frac{x^{4}}{4}-10x^{2}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.