მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 3x^{3}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
3\int x^{3}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ის მეშვეობით.
\frac{3x^{4}}{4}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით.
\frac{3}{4}\times 47^{4}-\frac{3}{4}\times 0^{4}
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{14639043}{4}
გაამარტივეთ.