მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int _{0}^{2}3x+2x^{2}\mathrm{d}x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x 3+2x-ზე.
\int 3x+2x^{2}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int 3x\mathrm{d}x+\int 2x^{2}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
3\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{3x^{2}}{2}+2\int x^{2}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ 3-ზე \frac{x^{2}}{2}.
\frac{3x^{2}}{2}+\frac{2x^{3}}{3}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ 2-ზე \frac{x^{3}}{3}.
\frac{3}{2}\times 2^{2}+\frac{2}{3}\times 2^{3}-\left(\frac{3}{2}\times 0^{2}+\frac{2}{3}\times 0^{3}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{34}{3}
გაამარტივეთ.