მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int x^{2}+x+1\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 1\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\frac{x^{3}}{3}+\int x\mathrm{d}x+\int 1\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით.
\frac{x^{3}}{3}+\frac{x^{2}}{2}+\int 1\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით.
\frac{x^{3}}{3}+\frac{x^{2}}{2}+x
იპოვეთ1-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{1^{3}}{3}+\frac{1^{2}}{2}+1-\left(\frac{0^{3}}{3}+\frac{0^{2}}{2}+0\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{11}{6}
გაამარტივეთ.