შეფასება
\frac{\sqrt{2}}{60}\approx 0.023570226
გაზიარება
კოპირებულია ბუფერში
\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ \frac{1}{2}-ზე \frac{x^{3}}{3}.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{4}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{5}}{5}-ით. გაამრავლეთ -1-ზე \frac{x^{5}}{5}.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{\sqrt{2}}{60}
გაამარტივეთ.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}