მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int _{-2}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(4x-x^{3}\right)^{2}-ის გასაშლელად.
\int _{-2}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 1 და 3 რომ მიიღოთ 4.
\int _{-2}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 3 და 2 რომ მიიღოთ 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ 16-ზე \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{4}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{5}}{5}-ით. გაამრავლეთ -8-ზე \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{6}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{7}}{7}-ით.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
გაამარტივეთ.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{\left(-2\right)^{7}}{7}-\frac{8}{5}\left(-2\right)^{5}+\frac{16}{3}\left(-2\right)^{3}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{2048}{105}
გაამარტივეთ.