მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int x+2-x^{2}\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -x^{2}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\int x\mathrm{d}x+\int 2\mathrm{d}x-\int x^{2}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{2}}{2}+\int 2\mathrm{d}x-\int x^{2}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით.
\frac{x^{2}}{2}+2x-\int x^{2}\mathrm{d}x
იპოვეთ2-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}+2x-\frac{x^{3}}{3}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ -1-ზე \frac{x^{3}}{3}.
\frac{2^{2}}{2}+2\times 2-\frac{2^{3}}{3}-\left(\frac{\left(-1\right)^{2}}{2}+2\left(-1\right)-\frac{\left(-1\right)^{3}}{3}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
\frac{9}{2}
გაამარტივეთ.