მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 9x^{3}\mathrm{d}x+\int 2\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
9\int x^{3}\mathrm{d}x+\int 2\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{9x^{4}}{4}+\int 2\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით. გაამრავლეთ 9-ზე \frac{x^{4}}{4}.
\frac{9x^{4}}{4}+2x
იპოვეთ2-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{9x^{4}}{4}+2x+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.