შეფასება
С+\theta ^{2}
დიფერენცირება θ-ის მიმართ
2\theta
გაზიარება
კოპირებულია ბუფერში
2\int \theta \mathrm{d}\theta
ფრჩხილებს გარეთ გაიტანეთ მუდმივა \int af\left(\theta \right)\mathrm{d}\theta =a\int f\left(\theta \right)\mathrm{d}\theta -ის მეშვეობით.
\theta ^{2}
რადგან\int \theta ^{k}\mathrm{d}\theta =\frac{\theta ^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int \theta \mathrm{d}\theta უნდა ჩაანაცვლოთ \frac{\theta ^{2}}{2}-ით. გაამრავლეთ 2-ზე \frac{\theta ^{2}}{2}.
\theta ^{2}+С
თუF\left(\theta \right) წარმოადგენს f\left(\theta \right)-ის ანტიდერივატივს, მაშინ f\left(\theta \right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(\theta \right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}