მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int \frac{1}{100}\left(3-7x\right)^{2}\left(91+292x\right)^{2}\mathrm{d}x
გამოთვალეთ-2-ის 10 ხარისხი და მიიღეთ \frac{1}{100}.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(91+292x\right)^{2}\mathrm{d}x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(3-7x\right)^{2}-ის გასაშლელად.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(91+292x\right)^{2}-ის გასაშლელად.
\int \left(\frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \frac{1}{100} 9-42x+49x^{2}-ზე.
\int \frac{74529}{100}+\frac{65247}{50}x-\frac{1058903}{100}x^{2}-\frac{244258}{25}x^{3}+\frac{1044484}{25}x^{4}\mathrm{d}x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ \frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2} 8281+53144x+85264x^{2}-ზე და დააჯგუფეთ მსგავსი წევრები.
\int \frac{74529}{100}\mathrm{d}x+\int \frac{65247x}{50}\mathrm{d}x+\int -\frac{1058903x^{2}}{100}\mathrm{d}x+\int -\frac{244258x^{3}}{25}\mathrm{d}x+\int \frac{1044484x^{4}}{25}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\int \frac{74529}{100}\mathrm{d}x+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{74529x}{100}+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
იპოვეთ\frac{74529}{100}-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ \frac{65247}{50}-ზე \frac{x^{2}}{2}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ -\frac{1058903}{100}-ზე \frac{x^{3}}{3}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით. გაამრავლეთ -\frac{244258}{25}-ზე \frac{x^{4}}{4}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{4}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{5}}{5}-ით. გაამრავლეთ \frac{1044484}{25}-ზე \frac{x^{5}}{5}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.