მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int \left(x+\frac{1}{2}\right)\left(\left(x^{2}\right)^{2}+2x^{2}x+x^{2}\right)\mathrm{d}x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x^{2}+x\right)^{2}-ის გასაშლელად.
\int \left(x+\frac{1}{2}\right)\left(x^{4}+2x^{2}x+x^{2}\right)\mathrm{d}x
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და 2 რომ მიიღოთ 4.
\int \left(x+\frac{1}{2}\right)\left(x^{4}+2x^{3}+x^{2}\right)\mathrm{d}x
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 2 და 1 რომ მიიღოთ 3.
\int x^{5}+\frac{5}{2}x^{4}+2x^{3}+\frac{1}{2}x^{2}\mathrm{d}x
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x+\frac{1}{2} x^{4}+2x^{3}+x^{2}-ზე და დააჯგუფეთ მსგავსი წევრები.
\int x^{5}\mathrm{d}x+\int \frac{5x^{4}}{2}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int \frac{x^{2}}{2}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\int x^{5}\mathrm{d}x+\frac{5\int x^{4}\mathrm{d}x}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{x^{6}}{6}+\frac{5\int x^{4}\mathrm{d}x}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{5}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{6}}{6}-ით.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{4}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{5}}{5}-ით. გაამრავლეთ \frac{5}{2}-ზე \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{x^{4}}{2}+\frac{\int x^{2}\mathrm{d}x}{2}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{3}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{4}}{4}-ით. გაამრავლეთ 2-ზე \frac{x^{4}}{4}.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{x^{4}}{2}+\frac{x^{3}}{6}
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ \frac{1}{2}-ზე \frac{x^{3}}{3}.
\frac{x^{4}}{2}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+\frac{x^{3}}{6}
გაამარტივეთ.
\frac{x^{4}}{2}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+\frac{x^{3}}{6}+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.