მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
დიფერენცირება x-ის მიმართ
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 3x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -1\mathrm{d}x+\int \frac{4}{x}\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
3\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -1\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
x^{3}+2\int x\mathrm{d}x+\int -1\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{2}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{3}}{3}-ით. გაამრავლეთ 3-ზე \frac{x^{3}}{3}.
x^{3}+x^{2}+\int -1\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ 2-ზე \frac{x^{2}}{2}.
x^{3}+x^{2}-x+4\int \frac{1}{x}\mathrm{d}x
იპოვეთ-1-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
x^{3}+x^{2}-x+4\ln(|x|)
პასუხის მისაღებად გამოიყენეთ \int \frac{1}{x}\mathrm{d}x=\ln(|x|), რომელსაც ზოგადი ინტეგრალების ცხრილში იპოვით.
x^{3}+x^{2}-x+4\ln(|x|)+С
თუF\left(x\right) წარმოადგენს f\left(x\right)-ის ანტიდერივატივს, მაშინ f\left(x\right)-ის ყველა ანტიდერივატივის მწკრივი მიღებულია F\left(x\right)+C-ით. მაშასადამე, მიღებულ შედეგს უნდა დაამატოთ ინტეგრაციის მუდმივა C\in \mathrm{R}.